It’s obviously a great achievement though it would be nice to see improvements larger than 1-2%.
Let’s hope the next one will be like a 10-12% improvement… though that’s probably wishful thinking.
Storage is likely the bigger issue now.
I’m more concerned with longevity and use of more environmentally friendly materials with solar panels than efficiency. In about 30 years or so, they reach their end of life so there will be hazardous waste resulting from that.
hazardous waste
What’s hazardous in the solar panels?
https://www.epa.gov/hw/end-life-solar-panels-regulations-and-management
Lead and cadmium.
Some solar panels are considered hazardous waste, and some are not
That’s horribly unspecific
Lead and cadmium
AFAIK in EU Leaded solder is forbidden since many years (outside of safety related equipment). Cadmium is regulated in similar fashion. Electronic equipment disposal and recycling is also strictly controlled.
The whole thing looks like fear mongering.
Every few decades we would dump fields and fields of solar panels. I’m sure that’s not good for the environment. The heavy metals, batteries, manufacturing and transportation byproducts, even the plastics that could be used in packaging. Wish there was a better renewable energy solution with no waste.
Nobody talks about dumping these things in the field. Glass, silicon, and aluminum can be reused or disposed safely. As I said in previous post - in EU electronic waste is disposed properly without dumping whole things into a landfill. Solar panels aren’t even the hardest e-waste to deal with.
It’s more about the use of perovskite (while retaining durability), which should lower the cost of the panels.
The efficiency improvement is a bonus.I thought that I had read that we are close to the theoretical max efficiency for solar. That may have been in a comment and completely false, but it may be something to look into if it interests you. If there is validity, then there just may not be enough room for those large jumps. I think making them out of safer materials and trying to make the mfg process greener would offset some of the shortcomings of efficiency.
Of silicon panels.
In the lab, mixing silicon and perovskites has already achieved 34%.36% now.
Every time I see a headline about perovskites solar cells, I ask “what’s the longevity?” Efficiency is nice, but it doesn’t mean anything when perovskites degrade hard in less than a year.
The idea would be that they’re so cheap that we can plaster them on any surface that gets a bit of sunlight. Higher efficiency is better than lower efficiency, of course, but it’s not such a big deal when they’re so damn cheap. But they have to last.
This article doesn’t even seem to answer the longevity question.