“From evening drives” Bad enough dealing with modern headlights with normal eyes
Do modern headlights emit IR? I don’t think so. Which means these IR amplifiers wouldn’t change the intensity of headlights.
IR is heat, so headlights produce a a lot of IR. Laser headlights emit less IR with the visible light, but radiate heat.
Well, IR isn’t heat, but it’s associated with it. And since laser and LED lights heat up a little bit, yes, they of course produce a miniscule amount of IR. But it’s pretty much negligible in comparison to their visible spectrum emissions. If you’re already being blinded by the visible range of the laser, the IR part isn’t gonna do much.
Touché
Now that I’ve read my own comment, I see that it came off harsher then I intended it to. Interpret it literally and not like a sarcastic statement.
Btw, just occurred to me that these would probably not work in a car at all, because regular glass is usually opaque to IR.
because regular glass is usually opaque to IR.
I’m almost 100% positive that this is not correct, because I’ve been driven around by someone wearing PVS-14 NODs with no headlights, on dirt roads, in a commercial van. (Edit - most red dot sights also work very well with NODs, and those have one or two layers of glass, depending on which type of system it is. The sights that don’t work well usually can’t dim the dot enough to avoid massive bloom.) Glass is mostly opaque to thermal though, and a lot of glass significantly reduces UV.
Instead, TMOS researchers used metasurface-based upconversion technology, which essentially provides an easier pathway for light photons to be processed. The photons travel through a resonant metasurface, where they mingle with a pump beam. The non-local lithium niobate metasurface boosts the energy of the photons, and draws them into the visible light spectrum without the need to convert them to electrons first. It also doesn’t require cryogenic cooling – which reduces ‘noise’ for sharper images in traditional night vision – so can do away with even more of the bulky night-vision goggle mechanics.
This reads like a Turbo Encabulator script.
The only quirky word in there is metasurface
Depends on your scientific familiarity. Also, part of the turbo encabulator script is that most of the words are not odd, it’s how they’re joined which is odd.
First: I’ll believe it when I see it. Every so often pie-in-the-sky claims of this type come out, and they often end up not being feasible, even if they’re technically possible.
Second: if it is feasible, given that gen 3 night vision tubes have remained stubbornly expensive, I would not expect this to be cheap for a long time.
iirc the way night vision currently works the actual amplifying part is incredibly thin and more than 90% of the thickness is post amplification cleanup.
I’m pretty sure you’re correct, although I believe that the part that’s capturing photons also needs to be heavily protected from the environment, and you also need something to prevent to many photons from getting to it and burning it out (e.g., almost all gen 3 NODs are autogated so that someone shining a flashlight at you won’t wreck your image intensifier tubes.)
It’s one of those things that can get pretty overwhelming to try and research as a consumer, because it gets really technical really fast.
Who knows. Some tech is both better functionally and cheaper. We’ll see. No need to hype anyway.
I don’t have much to contribute to the technical discussion here, just my comment that even playing with kids toy night vision goggles is awesome. For about $100 you can buy a really fun toy to play around with. Gets boring quickly, but kids might have fun with it longer.
This isn’t really night vision in the typical sense. It’s an Infrared camera in a thin package.
Also Military night vision is described wrong. The photon doubled is quite small. The problem is that afterwards the image needs to be turned again. That is done with fiberoptics. Those take the amount of space.
“This is the first demonstration of high resolution up-conversion imaging from 1550-nm infrared to visible 550-nm light in a non-local metasurface," said author Rocio Camacho Morales. "We choose these wavelengths because 1,550 nm, an infrared light, is commonly used for telecommunications, and 550 nm is visible light to which human eyes are highly sensitive. Future research will include expanding the range of wavelengths the device is sensitive to, aiming to obtain broadband IR imaging, as well as exploring image processing, including edge detection.”
That does not sound like an Infrared camera.
You’re right, there is no capture or recording of light in this system. Electromagnetic metasurfaces directly alter the waveform of photons as they pass through. In this instance it directly converts infrared light into visible 550nm (green) light.
Surly there is a lenses that flips images upside down. Have we tried just training people to deal with upside down surly it doesnt take too long for the brain to adapt.
It doesn’t. I recall an experiment a few decades ago where they turned the world upside down. Didn’t take participants long to “normalise” the image.
When they removed the experiment, took even shorter to flip back.
I seem to recall it being done in a train carriage, as art, but I’m not sure.
Huh guess a bit more training and u can totally remove the fibre optic flipping which if i recall correctly is the most expensive part.
The soldiers just have to wear the goggles all the time, or they’ll see upside down for several minutes.
Surly u can adapt to the change given enough practice.
Can’t wait to add this to my transitions blue light filter colour blind prescription smart glasses.