• 0 Posts
  • 7 Comments
Joined 1 year ago
cake
Cake day: July 8th, 2023

help-circle


  • The “message” does not have any local effect on reality - when you measure your particle, you have no way of figuring out if its partner was already measured elsewhere. The effect it does have is on the global state, maintaining the correlation that was encoded from the start.

    If you write up the density matrix for the system before and after measurement of one of the particles, you can see that while the density matrix changes, it does not change in a way one can measure.

    What I will concede is that before the first measurement the global state is |00>+|11>, afterwards it is |00> or |11>. This projection appears to happen instantaneously, no matter the distance, which is indeed faster than light.

    But calling the wave function collapse a signal or a message or a transfer of information is misleading, I would say. In your example, we know that the initial state is |00>+|11>, and that the result of the first measurement is then, say, 1. Then no further information is required to know that the other measurement will result in 1. No messages required, no hidden variables, simply the process of elimination.

    I would like to say that this is indeed a confusing subject, but that the math is clear, and that I am arguing what is my impression of the mainstream view in the field.


  • I fully understand the concept of entanglement and the experiments you mention, but I’m still to understand what you mean when you say “something” is being transmitted between the particles.

    As you say, this “something” cannot contain information, and it also cannot influence the particle physically, since there is no way to distinguish the physical state of the particle before and after it receives this “something”. So the signal contains nothing, and has no effect on physical reality. That sounds a lot like “nothing” rather than “something”.

    I completely get the argument that somehow the two particles must agree on what result to give, but in the theory this is just a consequence of how entanglement and measurements work. No transmission required.


  • Indeed. I’m not completely sure what point you are trying to make, but my point is not a hidden variable point. The states can be in a perfectly correlated superposition without any hidden variables, and still not “share anything” upon collapse into an eigenstate.

    I will concede that it looks a lot like one particle somehow tells the other “hey, I just collapsed into the |1> state, so now you need to as well”, but at a closer look this seems to happen on its own without any such message being shared. In particular, while the collapse of one state causes the collapse of the other, there is no physical way to distinguish between a state that was collapsed due to entanglement, and one that wasn’t. At least not until you send a sub-FTL signal to explain what happened.

    So if physically, the state of particle 1 before and after particle 2 was measured is indistinguishable, how can we say that “something” was shared from particle 2 to particle 1?